均匀分布的分布律

均匀分布的分布律

问题描述

均匀分布的分布律急求答案,帮忙回答下
精选答案
最佳答案

在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

均匀分布的分布函数:已知概率密度f(x),那么求F(x)对f(x)进行积分即可,在x<a时,f(x)都等于0,显然积分F(x)=0,而在a<x<b时,f(x)=1/(b-a),不定积分结果为x/(b-a),代入上下限x和a,于是在a到x上积分得到概率为(x-a)/(b-a)等。

求法

已知概率密度f(x),

那么求F(x)对f(x)进行积分即可,

在x<a时,f(x)都等于0,

显然积分F(x)=0

而在a<x<b时,f(x)=1/(b-a)

不定积分结果为x/(b-a),代入上下限x和a

于是在a到x上积分得到概率为(x-a)/(b-a)

那么x大于等于b时,概率就等于1,

所以得到了上面的式子。

概率函数与分布函数

概率密度函数

用于直观地描述连续性随机变量(离散型的随机变量下该函数称为分布律),

表示瞬时幅值落在某指定范围内的概率,所以是幅值的函数。连续样本空间情形下的概率称为

概率密度当试验次数无限增加,直方图趋近于光滑曲线,曲线下包围的面积表示概率,该曲线即这次试验样本的概率密度函数。

分布函数

用于描述随机变量落在任一区间上的概率。如果将x看成数轴上的随机点的坐标

那么分布函数F(x)在x处的函数值就表示x落在区间(-∞,+∞)上的概率。分布函数也称为概率累计函数。

两者的区别

分布函数是概率密度函数从负无穷到正无穷上的积分;在坐标轴上,概率密度函数的函数值y表示落在x点上的概率为y;分布函数的函数值y则表示x落在区间(-∞,+∞)上的概率。

点击这里复制本文地址 以上内容由生活美整理呈现,请务必在转载分享时注明本文地址!如对内容有疑问,请联系我们,谢谢!

支持Ctrl+Enter提交
qrcode

生活美 © All Rights Reserved.  Copyright Your WebSite.Some Rights Reserved.
Powered by SHENGHUOMEI